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We consider the way in which a solution to a class of nonlinear partial differen- 
tial equations S(u)u, = (K(u)u.,.).,. approaches the similarity form. The problem 
we solve is chosen for two main reasons: first the equation above is of 
widespread use in modeling physical situations and second it provides a 
tractable but significant example of a free boundary problem. 

KEY WORDS: Heat conduction, invariants of the symmetries; similarity 
reduction. 

1. I N T R O D U C T I O N  

The p rob lem of  heat  conduct ion  in isotropic  solids and the processes of 
melt ing and evapora t ion  of  metals  in the case that  their  surface is exposed 
to a powerful flux of  energy are described by a nonl inear  equation.  I ~-4~ 

S(u)u,=(K(u)u.,.)., . ,  t ~ O  and x~>0 (1.I)  

where K(u) is the thermal  conductivi ty,  S(u) is the specific heat,  and u(x, t) 
is the tempera ture  field to be found. A t ransformat ion  which could in 
certain cases linearize the nonl inear  heat  equat ion was first in t roduced by 
Storm Ill for a constant  heat  flux. Using the Backlund t ransformat ion,  
which leads to the theory of  homology,  Munier  et. al ~3~ gave an example 
based on heat  conduct ion  in metals  for the special case, where the produc t  
of the thermal  coefficients S K  is constant ,  and Eq. ( 1.1 ) in this case can be 
t ransformed into; the l inear heat  equation.  

Chern iha  et. al ~4~ devised a special t ransformat ion s = ( x -  vt), which 
reduced Eq. (1.1) to nonl inear  o rd inary  differential equat ion for some 
functions S(u) and K(u). 
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Physically interesting problems usually have some symmetries. Using 
these symmetries; we can simplify the equation to a certain extent. There 
is a systematic way to do this, viz., using Lie group analysis to find all 
the invariants of the symmetries, and constructing solutions with these 
invariants. In this way the equations will be simplified and special solutions 
can be obtained. The similarity transformation method based on Lie group 
analysis has many applications when dealing with differential equations 
and related physical problems. 15-9~ Especially in the nonlinear case, it can 
sometimes help us in finding physically meaningful exact solutions. 

The equation (1.1) we are going to consider is strongly nonlinear, and 
it is desirable and interesting to find all analytic solutions or reduce it to 
ordinary differential equations that may be solved numerically. One pur- 
pose of this study is to find all transformations which will reduce the heat 
conduction equation (1.1), with a general form of the thermal coefficients 
S(u) and K(u). The central motivation of this article is to apply the Lie 
similarity method, which does not seem to have been applied systematically 
to the nonlinear equation (1.1). 

The present article is organized as follows: In Section 2 an exhaustive 
symmetry analysis is carried out and this enables us to classify the thermal 
coefficients according to the symmetry properties of Eq. (1.1). Lie group 
generators for every case are found, the basic fields of an optimal system 
are given, and the corresponding subclasses of reduced ordinary differential 
equations are presented in tabular form. In Section 3 we construct exact 
classes of similarity solutions. 

2. S Y M M E T R Y  T R A N S F O R M A T I O N  A N D  
S I M I L A R I T Y  R E D U C T I O N S  

Consider the one-parameter (e) Lie group of infinitesimal transforma- 
tions in x, t and u given by 

= x + eX(x, t, u, ) + O(e 2) (2.1a) 

! = t + eT(x, t, u) + O(e 2) (2.1b) 

u_ = u + eU(x, t, u) + O(e 2) (2.1c) 

Then the first and second extensions, which refer to how the first and 
second partial derivatives transform, can be determined by using Eqs. (2.1), 
for example 

O(u(x, t) + eU(x, t, u)) + O(e 2) 
Yx - 0,. 

= Ux + e( Ux + ( U , -  X , . ) u x -  T x u t -  X,,u~.- T,,uxu,) + O(e z) 
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which we write as 

y,. = u,. + eU" + O(e 2) (2.2a) 

where U" denotes the infinitesimal t ransformat ion of Yx. In a similar way, 
the infinitesimal t ransformations U', U"" of  the part ial  derivatives _u, and 
y_~._,, can be obtained (s} and we have 

y, = u, + eU'  + O(e 2) (2.2b) 

-U~v~v = / g x x  "~ ~ UXX '~- O ( e 2 )  (2.2c) 

where 

Ut= U~ + ( U , , -  T , ) u , -  X~u , . -  T , , u~ -  X,,u,.u,) (2.2d) 

U "  = Ux. , .+(2U~, , -Xx . , . )ux-Tx . , .u ,+(U, , , -2X, . , , )u  ~. 

- 2Tx.,,ux.u, 3 , . . - X , , , u , . - T , , , u - , . u , + ( U , - 2 X x ) u x x  

-- 2T,.u,., - 3X,,u,..,.ux - T,,u.,.,.u, -- 2T ,  ux, ux (2.2e) 

The nonlinear heat equat ion (1.1) is invariant under  this t ransformat ion if 

S(y)  y, = (K(y)y.,.).,. (2.3) 

Making  use of Eqs. (2.1) and Eqs. (2.2), to first order in e, Eq. (2.3) 
becomes 

~ ~ 2 SU'  + Uu, d s / d u = K U ' "  + 2UXuxdK/du+ Uu-~.xdK/du+ Uu?,.d-K/du (2.4) 

Condit ions on the infinitesimals ,t, T and U are determined by equating 
coefficients of  like monomia ls  in U,. and u, and higher derivatives. This 
leads to a set of  partial  differential equations that  must  then be solved. 
After some simplification, they given by, 

T x = T,, = 0, ,t",, = 0 (2.4a) 

U,,,, + d(ln K)/du U,, = d2(ln K)/du 2 U =  0 (2.4b) 

U =  (2Xx - T,) /[d( ln(k/S) /du] (2.4c) 

U, = (K/S)  U:,..,. (2.4d) 

2(dK/du) U,. + SX,  + K(2U.,.,,- Xx.,-) = 0 (2.4e) 

Analysis of this system of equations leads to the explicit f rom of the 
functions ,t, T and U. For  example, substituting Eq. (2.4c) into both of 
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Eqs. (2 .4e)  and Eqs. (2.4.d) and equating different powers of u to zero 
g i v e s  

X,.,. = 0, X , = 0 ,  r , , = 0  

which imply that 

X =  X(x) = Cl x + C2 (2.5a) 

T= T( t) = C3t + C4 (2.5b) 

U= U(u) = (2C, - C3)/d[ln(K/S)]/du (2.5c) 

where C;'s are arbitrary constants . Substitution of Eq. (2.5c) into Eq. 
(2.4b) gives 

Y ' / Y '  - 2( Y"/Y')2 + ( Y" /Y ' ) (K ' /K)- - (K ' /K) '  =O (2.6) 

where Y = l n  (K/S) and primes denote differentiation with respect to u. 
Four cases arise depending on whether or not K(u) and S(u) satisfy 
equation (2.6); these are: 

Case 1: S ( u ) = a + b u ,  K ( u ) = c  

Case 2: S(u) = exp(au), K(u) = b 

Case 3: S(u) = u r K(u) = u q 

Case 4: S(u) = exp(au), K(u) = exp(bu) 

where a, b, c, r, and q are arbitrary constants. 
The knowledge of the infinitesimal elements X, T and U given 

Eq. (2.5) enables us to construct the differential operator of the form 

B = XO/Ox + TO/Ot + UO/Ou 

(2.7) 

I n  

which depends on the number of  the group constants C1, Cz, C3, and C4. 
The four generating operators Bi can be constructed by taking one of the 
group constants equal to 1 and the remaining three constants equal to zero. 
One obtains 

B 1 ~ 0 x 

B 2 = 0 t 

B 3 = x O  x -4- (2/Y')Ou 

9 4 = tO, -  (1/Y')O, 

(2.8) 
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Table I. Symmetries of the One-Dimensional 
Nonlinear Heat Conduction Equation a 

S(u)  g (u )  B3, B 4 =  S"O x-f- TOt + U~,, 

a + b u  c B 3 = x O . ~ - 2 ( u + a ] b )  O . 

B 4 = lO t d- (u + a/b) 0 u 
e "  b B 3 = x O x + ( 2 / a )  O,, 

B4=tO,  + ( l /a )  O,, 
u r u q B 3 = x O . , + ( 2 u / q - r )  a,, 

B 4 = tO, - -  ( u / q  - -  r )  O .  

e ~" e b" B 3 = x O x +  [ 2 ~ ( b - a ) ]  0,, 

B 4 = tO, - [ l / (b  - a)] 0,, 

aa, b , c , r ,  q e R .  

These four linearly independent operators determine the symmetries under 
which Eq. (1.1) is invariant.  The two symmetries B~ and Bz apply for all 
forms of S(u) and K(u), and are omitted from Table I, where B 3 and B4 
are shown for the different cases in (2.7). 

The main use of symmetries is to obtain a reduction of variables in 
Eq. (1.1), which can be obtained by solving the following characteristic 
equation: 

dx/X= dt/r= dulY 

The general solution of these equations will involve two arbitrary 
constants, one of which takes the role of similarity variable s = s(x, t) and 
the other, say F(s), plays the role of dependent variable, usually called 
the similarity function. By substituting the similarity forms in the partial 
differential equation (1.1), it will be reduced to an ordinary differential 
equation in F(s). Solutions F(s) lead by back substitution to so-called 

Table II. The Optimal System for Heat Equation (1.1) 

S(u) �9 K(u)  Optimal system 

a + b u  
e au 
u r 

e au 

c B3, B4, B t + B 2 ,  B 3 + B 2 ,  B ~ + B 4  
b B4, B3, Bt  + B : ,  BI + B 4 ,  B , + B  3 

u q B2, B3, B4, Bt +B2, B I + B 4 ,  B4+B3, B2+B3 
e bu B2, B 3, B4, Bt + B,, B 3 + B4, B2 + B3, B~ + B 4 
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Table III. The Optimal System for Heat Equation (1.1)~ 

s(x ,  t) u(x,  t) R e d u c e d  e q u a t i o n s  

I. ( a + b u ) u , = c u x x  

B 3 t F / 2 x 2 - a / b  F ' =  12c/b 

B4 x t F -  a/b F" = (b/c) F 2 

B j + B , _  x - t  F c F " + a F ' + b F F ' = O  

B 3 +  B ,  e ' /x  F / x 2 - a / b  s2F" + 6 s F ' - ( b s / c ) F F '  + 6 F = O  * 

Bt  + B4 e"t - t  t F - a / b  s2F" + sF'  + (b]c) s F F ' - ( b / c )  F 2 = O  * 

I1. e x p ( a u )  u, = bu.,..~ 

B3 t l n ( x  -'-/~F) F ~ -  IF' = 2b/a 

B4 x ln(tl/aF) F F " - F ' 2 = F " + ' - / a b  

B I + B 2  x - t  F b F " + e ' r F  ' = 0  

BI + B 4 e"/t ln( t  I /"F) bs2FF" + b s F F ' - b s ' - F ' 2  + sF~+ lF ' 

- -  F ~ + 2 / a  = O*  

B 2 + B  3 et.~ . - I  ln(x-2/~F)  b s 2 F F " - b s 2 F ' 2 + 2 b s F F ' + ( 2 b a )  F 2 

- s F  ~ + I F '  = O*  

III.  u'u, = (uq,G)x 

B 3 t X2/Iq-r)F 

B 2 x F 

B 4 x l -I /Iq-r)F 

B~ + B 2 x - -  t F 

Bi + B 4 e-"t -~ e.~/Ir-q~F 

B 3 + B 4 x t  - I XI/Iq--r) F 

B 2 + B  3 x e - '  e 2t/Iq-r)F 

IV. e x p ( a u )  u, = [ e x p ( b u )  u.,.].,. 

B 3 t ln(x2/r 

B 4 x ln(t l / l~-bJF) 

B 2 x F 

B t + B  2 t - - x  F 

B 3 + B  4 t / x  l n ( x - I / ~ - b ~ F )  

B 2 + B  3 x e - '  ln(x-Z/ l"-b>F) 

B t + B 4 t e - "  In(t~/la-mF) 

F ' =  { ( 2 q +  2r + 4 ) / ( q - r 2 ) }  F q-~+l 

FF"  + qF'2 = 0 

FF"  + q F  '2 + F - q +  2 / ( q - r )  = 0  

FF" + q F  '2 + F r -q+ IF' = 0 

s2FF . + qs2F,2 + s2F ,F  ~- q + t 

+ {(q + r -  2 ) / ( r  - q)} sFF'  + {(q + 1 )/(q - r)  2} r 2 = 0* 
s2FF . + qs2F,2 + s 2 F , F , - q  + i 

+ { ( 2 + 2 q ) / ( q - r ) }  s F F ' +  {(1 + r } / ( q - r )  2} F 2 = 0  * 
FF" + q F  '2 + s F  ~-q+ tF'[  2/(q - r ) ]  F 2-q+~ = O* 

F ~ - b -  IF '  = (2a  + 2b)/(a - b) 2 

FF" + (b - 1 ) F '2 - F ~-I'+ 2/(a - b) = 0 

F"  + b F  '2 = 0 

e ~b - ~ F ( F "  + b F  '2) = F'  

sZFF" + { 2 a s / ( a - b ) }  FF'  
+ (b - 1 ) s2F '2 -+  { a/(b - a)  2 } F- '  - F ~ - b + i F ,  = 0* 

sZFF" + (b - 1 ) s2F '2 + s F  ~-h+ iF' 

- {4bs](b - a)} r r '  + {2(a  + b)/ (b  - a)  2 } r 2 = 0* 
s2FF" + sFF '  - ( b + 1 ) s2 F '2 - s F  ~ - h + IF' 

- F ~ - h +  2 / ( a - b ) = O  * 

Here  F '  = dF/ds. A s t e r i s k  i n d i c a t e s  n o n i n t e g r a b l e  O D E .  
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similarity solutions u(x, t) of Eq. (1.1). Reductions of Eq. (1.1) may be 
obtained from any symmetry which is an arbitrary linear combination 

dlBi + d,_B2 + d3B 3 + d4B4, d i ~ R 

Since there are almost always an infinite number of such combinations it 
is usually not feasible to list all possible similarity solutions. A systematic 
procedure of classifying these solutions is based on the property that the 
transformations of the symmetry group will transform solutions of the dif- 
ferential equation into solutions (see, e.g., ref. 9). Therefore, it is sufficient 
to consider only linear combinations which lead to solutions that are 
inequivalent with respect to symmetry transformations, this set of solutions 
is called an optimal system. The optimal system is determined for each of 
the cases listed in Table I to ensure that a minimal complete set of reduc- 
tions is obtained from the symmetries of the governing equation. Table II 
lists the optimal system from each of the entries from Table I. 

Table III shows the reduced ordinary differential equation and relates 
symmetry invariants for each of the optimal systems in Table II, together 
with the corresponding similarity variables s and the similarity forms 
connecting F(s) and u(x, t). The reduced ODEs listed in Table III may or 
may not be solvable in closed from. 

3. EXPLIC IT  S I M I L A R I T Y  S O L U T I O N S  OF Eq. (1 .1 )  

The resulting ordinary differential equations in Table III are of second 
order, except for the case where the symmetry B3 with s = t leads to a first 
order ODE, and by separating the dependent and independent variables 
they can be reduced to quadrature. Thus the explicit general solutions are 
simple. The ODEs of second order resulting from the reductions are non- 
linear; some of them belong to the class of integrable and exactly solvable 
evolution equations, and the others are not integrable but may be solved 
by numerical methods. The nonintegrable ODEs in Table III are marked 
by asterisks. In the following we will focus our attention on the analytic 
solution of the integrable nonlinear ODEs listed in Table III in the cases 
mentioned earlier. 

Case 1. If S ( u ) = a + b u ,  K(u)=c; c, bv~O. The nonlinear diffusion 
equation (1.1) in this form occurs in the problem of the thermal expul- 
sion of fluid from a long, slender, heated tube, ~'~ and the quantity u 
represents the flow velocity induced in the fluid by the heating of the tube 
wall. 
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The second equation has the solution 

F(s)  = [ (b/6c) - 1/2 s + c] -2  

C is a constant. Then Eq. (1.1) has a solution of the form 

u(x, t) = tF(x)  - a / b  (3.1) 

Another type of solution can be obtained by symmetry B~ + B_,, where the 
corresponding reduced equation has the solution 

F(s) = ( A e a " -  D)/1 - C l e  ~ 

where A, G and D given by 

bA = C 1 [ a - ( a 2 + 2bC2) - 1/2 ] 

cG = (a z + 2bC2)-1/2 

bD  = a + (a 2 + 2bC2) -1/2 

and C~ and C2 are constants of integration. From the similarity representa- 
tion in Table III, Eq. (1.I) has the solution, 

u(x,  t) = F ( x  - t) = (Ae  ~  '~ - D)/ (  1 - CI eGtx -  r)) (3.2) 

This result is very close to the result in ref. 4 with appropriate boundary 
values. 

Caso 2. S(u)  = e"" and K ( u ) =  b; a, b ~ 0 The second ODE is non- 
linear of second order, exact solutions can be found only for special values 
of the parameters: a - -  - 2 ,  1 and b arbitrary. 

(i) For a- -  - 2 ,  it has the solution 

C I F ( s ) = ( 2 b ) - m c o s ( C I s + C 2 ) ,  b > 0  

C j F ( s ) = ( 2 b ) - I / Z c o s h ( C I s + C 2 ) ,  b < 0  

then Eq. (1.1) has the solution 

u(x,  t) = ln[ t - m F ( x )  ] (3.3) 
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(ii) For  a = 1, it has the solution 

2F(s) = bCl ( t anh  2 sl - 1 ), C1 > 0 

2F(s) = -bCl( tanZs2+ 1), C1 < 0  

where s , = C  2 - � 8 9  and s 2 = C z + � 8 9  with C, and C2 con- 
stants. Then Eq. 1 has the solution 

u(x, t) = ln[ tF(x)] (3.4) 

The third reduced equat ion in Table I I I  for this case has the solution 
F(s) = In (s/b - C~ ) - t/u, C1 = constant  and the second integration constant  
is z e r o .  Then Eq. 1 has the solution 

u(x, t) = l n [ ( x - -  t)/b - Cl ] -1/, (3.5) 

The range of the variables is determined by requiring the expression in the 
r.h.s, to be positive . These results may  be compared  to the results in 
ref. 4. 

C a s e  3. S(u) = u ~ and K(u)= u '1. A different variety of  solutions can 
be determined by solving the reduced O D E s  in Table I I I  as follows: The 
second equat ion has the solution 

F(s)=exp(Cl+C2s)  for q = - I  
(3.6) 

F(s)=(CI +C,_s) 1/'1+1 for q r  

Then Eq. (1.1) has the stat ionary solution u = F(x),  with C1, C2 constants. 
The third equat ion is integrable for two cases: 

(i) When r - q  = 1, the first integral gives 

F '2 = (C~ F -2q-4qF3)/[ - 2 q ( 3  + 2q)] ,  C1 = const (3.7) 

which can be integrated once again for certain values of  q. 

(ii) when r - q  = 2, the first integral gives 

1 ~'2= ClF-Zq+F4/(2q+4)  Cl = const (3.8) 

which can be integrated once again for certain values of  q. Once we have 
the solution of the reduced equat ion F(s), the general solution of Eq. (1,1) 
is given by 

u(x, t) = t - l /q- 'F(x)  
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The fourth ODE,  has a first integral given by 

F ' = C I F  -'t, - - F - q + r + l / ( r + l )  r: / : - - I  (3.9) 

which is separable and can be integrated once again for some values of  r 
and q. 

It is worth noting that Eq. (1.1) in this case, with r = 1, describes diffu- 
sion of  a species. It has been pointed out by Dresner t~~ that this equation 
arises in the problem of the current distribution in superconductors under- 
going a current ramp. 

Case 4. 
solution 

S(u) =e  a" and K ( u ) : e  b'', a :/:b. The third O D E  has the 

F =  ln(Cis  + C2) lib 

where C= and C2 are constants. The stationary solution of  Eq. (1.1) is given 
by 

u(x, t) = ln(ClX + C2) =/b (3.10) 

The fourth O D E  has a first integral of  the form 

F' = e-be( Ci "t- e"r/a) (3.11 ) 

where C~ is constant of  integration. Equation (3.11) is a separable O D E  
and can be integrated once again for some values of  a and b. 

The second O D E  is integrable for some values of a and b as follows: 

1. For  b = 0, a = - 2, it has the solution 

F(s) = cos(C, s + C2)/v/2 Cl 

where C~ and C2 are constants. Then Eq. (1.1) has the solution 

u = In[ t-l/2F(x)] (3.12) 

2. For  b = 1, a = - 1 it has the first integral 

F '2 = In F - I  + C1 (3.13) 

3. For  b = 2, a = 0, its solution is 

F 2 = Ct + C2s-s2 /2  (3.14) 

where Ct and C2 are constants. 
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4. For b = 0, a = - 1, it has first integral of the form 

F ' - '  = 2 F +  CIF  2 (3.15) 

5. For b = 0, a = 1, its first integral is 

F '2 = 2F 3 + Ci F 2 (3.16) 

where C~ is a constant. 

Equations (3.13) (3.15) and (3.16) are separable and may be integrated 
again to get the explicit solutions F(s). Once we know F(s), the similarity 
solution u(x, t) of Eq.(1.1) can be obtained by using the similarity represen- 
tation in Table III. 

It is worth noting that the solution of Eq. ( 1.1 ) in this case has already 
been given by Storm tll for the constant heat flux S = K = c o n s t .  and by 
Munier et. alJ 3~ for the case S ( u ) = e  ..... and K(u)=e"". Here we have 
determined some new exact solutions for the general form of the thermal 
coefficient S and K. 

4. C O N C L U S I O N S  

The results derived in this paper all stem from the enlargement of the 
generalization of Lie's classical method using symmetry groups. The 
detailed analysis of similarity solutions associated with classical groups of 
the heat conduction equation (1.1) indicates the following result: invariance 
principles, through the Lie similarity method, lead to a classification of the 
thermal coefficients and enables us to obtain a great variety of solutions to 
a nonlinear problem. In addition, they asymptotically describe the evolu- 
tion of the problem with quite general initial or boundary conditions. As 
a final comment, we notice that an application of the Lie similarity method 
puts us inlet a position to construct the most general classes of similarity 
solutions for Eq. (1.1) and represents one of the most powerful analytical 
techniques to solve nonlinear differential equations. 

A procedure to obtain new exact solutions by the Lie similarity 
method has also been successfully applied to invariant partial differential 
equations under potential symmetriesJ ~2, ~31 
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